ABSTRACT

Background

The αβ T cell antigen receptor (TAC) is a novel, proprietary chimeric receptor that facilitates the redirection of T cells to tumor cells and activates T cells by co-opting the endogenous T cell receptor complex with the goal to elicit safe and durable anti-tumor responses. TAC1-H3-HER2, a first-in-class, autologous TAC T cell product targeting HER2 (BBR2), has entered a phase 1/II clinical trial in patients with HER2-positive solid tumors. Here we present results from a new TAC T product targeting guanylyl cyclase 2C (GUCY2C). GUCY2C belongs to a family of membrane-bound mucosal guanylate cyclase receptors which are normally expressed on the apical brush border of intestinal epithelia, a site accessible to T cells. In cancer, however, GUCY2C is frequently overexpressed in primary and metastatic colorectal cancer tissues, designating it a favorable antigen for specific targeting of tumor cells via TAC T cells. Using both in vitro and in vivo assays, we selected the top 2 GUCY2C-TAC performers out of 34 candidates, which demonstrated strong and specific activity of GUCY2C-targeted T cells against GUCY2C-expressing tumor models.

Materials and Methods

The top 2 GUCY2C-TAC constructs were modified to improve efficiency by mutation of the CD3 binding domain and humanization of the nanobody, antigen binding domain. These new GUCY2C-TACs were functionally evaluated using various in vitro and in vivo assays. In vitro assays included proliferation, cytotoxicity, and recruitment of kinases (Lck) via TAC-TCR complexes, leading to effective cell killing. In vivo studies examined the anti-tumor effect of these GUCY2C-TACs in both liquid and solid tumor models.

Results

The GUCY2C-TAC constructs showed strong specific activation when co-cultured with a variety of cancer cells expressing GUCY2C in vitro. Proliferation of the GUCY2C-TAC T cells was induced upon co-culture with naturally expressing GUCY2C target cell lines as well as GUCY2C-engineered cell lines. In vitro cytotoxicity assay demonstrated a strong anti-GUCY2C response and killing of GUCY2C-targeting cell lines. Immunohistochemical analysis of GUCY2C-TAC T cells in mice carrying GUCY2C-positive tumor xenografts led to a favorable anti-tumor response.

Conclusions

The in vitro and in vivo data confirm strong and specific activity of humanized nanobody GUCY2C-targeted TAC T cells against GUCY2C-expressing tumor cells.

TAC SCIENCE

The membrane-bound TAC receptor interacts directly with the TCR-COD3 epitope domain and... binds directly to the targeted tumor antigen. Clustering of TAC-TCR complexes leads to... recruitment of kinases (Lck) via the cytoplasmic co-receptor domain and...

CONCLUSIONS

GUCY2C-TAC T cells lack signs of terminal exhaustion. GUCY2C-TAC T cells from cytotoxicity assay were phenotyped by flow cytometry at day 6 and found to maintain high levels of CD69 and GUCY2C-TAC expression, similar to CD19-TAC T cell positive controls. Percentage of CD8+ and CD4+ T cells were determined by flow cytometry and calculated as a percentage of total CD8+ and CD4+ cells. GUCY2C-TAC T cells from cytotoxicity assay were phenotyped by flow cytometry and calculated as a percentage of total CD8+ and CD4+ cells.

DEVELOPMENT OF GUCY2C-TAC T CELLS FOR THE TREATMENT OF COLORECTAL CANCER

Triumvira Immunologics, 9433 Bee Caves Rd Bd 1, Suite 240, Austin, TX 78733, USA (Headquarters), 270 Longwood Rd S, Hamilton, ON L8P 0A6, Canada (Research Division)