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T cell antigen coupler (TAC) is a chimeric receptor that redirects T cells (TAC-T) towards surface-expressed tumor Cocoon® Platform y e - /
antigens to create safe and durable anti-cancer immune responses. The TAC activates T cells by co-opting the 8 _ 4 . A
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HERZ2, a first-in-class TAC-T product targeting HER2 (ERBBZ2), has entered a phase l/Il clinical trial. Here, we have & 20- 800-
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In vitro, HER2-specific TAC-T products were challenged with HER2-expressing and HER2-negative tumors cells. " scRNZseqsignattres = 400 ' L
Kinetics of T cell proliferation, degranulation, activation, differentiation, and memory generation was assessed by flow '@ 300-
cytometry. TAC-T products were subjected to multiple rounds of tumor cell exposure in vitro to test the durability of the T- B OREx T Pag M Cocoon - Y
cell-mediated immune response. Bioinformatic clustering analysis of flow cytometry data was performed to identify T cell Figure 1: (Left) Lonza Cocoon® Platform; (Right) Bar graph representing memory 4 200- ?
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Co-culture studies revealed that TAC-T products become rapidly activated and degranulate upon contact with HER2- 4 . . . . . N TACRepeat#1  -m- TACRepeat#2  -A- TAC Repeat #3
expressing, but not HER2-negative, cell lines. Activation coincided with rapid downregulation of the TAC receptor. A Antlgen'dr“’en T cell activation in the absence v Targetalone -+ Non-transduced T cells
large proportion of the T cells expressed activation markers, and a majority of these also expressed degranulation : -
markers, indicating ongoing cytotoxicity. In vitro and in vivo studies demonstrated a CD8-biased response characterized Of terminal T cell EXhaUSt'IOI'I , . , oot , L , ,
by a considerable expansion in the activated CD8 population enriched at the tumor site. Later, activation and Figure 3: Persistent TSCM fraction during TAC-T target engagement. (Top) Bioinformatic analysis of TAC-T scRNA = J—
differentiation markers returned to baseline concurrently with the re-emergence of surface TAC expression, initiating T signature clustersand dot plots from 48 hr co-cultures with tumor cells. (Bottom) T cell phenotype clusters and dot plot 1x10"cells ACT
cell proliferation. Importantly, central memory T cells were expanded, and stem-like cells were maintained, suggesting \from 17-color complexflow cytometricanalysis of cellsafter 0-4 days of coculture with tumor cells. y 6 x 10° TACOL-HER? T“”;I‘érl_rﬁg;%'d'n‘fgge
strong self-renewal potential. In vitro serial cytotoxicity assays showed that TAC-T products could repeatedly kill tumor \ g
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The TAC-T product mounts an effective anti-tumor response in multiple preclinical models, comprising activated TAC-T TACOL-HER2 C
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