Development of GUCY2C-TAC Cells for the Treatment of Colorectal Cancer


Triumvira Immunologics, 9433 Bee Caves Rd Building 1, Suite 240, Austin, TX 78733, USA (Headquarters), 270 Longwood Road South, Hamilton, Ontario L8P O6A, Canada (Research Division)

Tumor Cell Survival

A. Effect of GUCY2C-TAC T cell growth on tumor xenograft growth.

B. Intravenous administration of GUCY2C-TAC T cells in mice carrying GUCY2C-positive tumor xenografts resulted in a significant reduction of tumor burden.

Conclusion

Intravenous administration of GUCY2C-TAC T cells in mice carrying GUCY2C-positive tumor xenografts resulted in a significant reduction of tumor burden.

Summary

- Identified multiple functional GUCY2C-TAC candidates
- GUCY2C-TAC candidates display high in vitro and in vivo potency
- GUCY2C-TAC cells effectively control aggressive NALM6™ tumor xenografts in vivo at low T-cell doses

Development of GUCY2C-TAC Cells for the Treatment of Colorectal Cancer


Triumvira Immunologics, 9433 Bee Caves Rd Building 1, Suite 240, Austin, TX 78733, USA (Headquarters), 270 Longwood Road South, Hamilton, Ontario L8P O6A, Canada (Research Division)

Tumor Cell Survival

A. Effect of GUCY2C-TAC T cell growth on tumor xenograft growth.

B. Intravenous administration of GUCY2C-TAC T cells in mice carrying GUCY2C-positive tumor xenografts resulted in a significant reduction of tumor burden.

Conclusion

Intravenous administration of GUCY2C-TAC T cells in mice carrying GUCY2C-positive tumor xenografts resulted in a significant reduction of tumor burden.

Summary

- Identified multiple functional GUCY2C-TAC candidates
- GUCY2C-TAC candidates display high in vitro and in vivo potency
- GUCY2C-TAC cells effectively control aggressive NALM6™ tumor xenografts in vivo at low T-cell doses